Mutipy by 1 Digit Numbers

Show What You Know

Check your understanding of important skills.
Name \qquad
Arrays Write a multiplication sentence for the array.

2.

Multiplication Facts Find the product.

3. $\quad=9 \times 6$
4. \qquad $=7 \times 8$
5. $8 \times 4=$ \qquad

Regroup Through Thousands

Regroup. Write the missing numbers.
6. 9 tens 10 ones $=$ \qquad hundred
8. 25 tens $=$ \qquad hundreds 5 tens
10. 3 tens 12 ones $=$ \qquad tens 2 ones

WITH

CARMEN

 SANDIEGOThe Arctic Lion's Mane Jellyfish is one of the largest known animals. Its tentacles can be as long as 120 feet. Be a Math Detective to find how this length compares to your height. Round your height to the nearest foot. 120 feet is \qquad times as long as \qquad feet.

Vocabulary Builder

Review Words			Preview Words
\checkmark estimate	\checkmark place value	\checkmark rounding	Distributive Property
expanded form	product		partial product
factor	\checkmark regroup		

Visualize It

Complete the flow map, using the words with a \checkmark.

Multiplying

What can you do?

Understand Vocabulary

Complete the sentences.

1. The \qquad states that multiplying a sum by a number is the same as multiplying each addend by the number and then adding the products.
2. A number that is multiplied by another number to find a product is called a \qquad .
3. A method of multiplying in which the ones, tens, hundreds, and so on are multiplied separately and then the products are added together is called the \qquad method.
\qquad

Multiplication Comparisons

Essential Question How can you model multiplication comparisons?
You can use multiplication to compare amounts.
For example, you can think of $15=3 \times 5$ as a comparison
in two ways:

15 is 3 times as many as $5 . \quad 15$ is 5 times as many as 3.

5
5

3 UNLOCK the Problem REAL wORLD

Carly has 9 pennies. Jack has 4 times as many pennies as Carly. How many pennies does Jack have?

P Draw a model and write an equation to solve.

So, Jack has \qquad pennies.

- H.O.T. Explain how the equation for 4 is 2 more than 2 is different from the equation for 4 is 2 times as many as 2 .
- What do you need to compare?

The Commutative Property states that you can multiply two factors in any order and get the same product.

Remember

15

3

RECORD

Use the model to write an equation and solve.
$n=$ \qquad \times \qquad
$n=$ \qquad
The value of n is 36 .
Think: n is how many pennies Jack has.

MATHEMATICAL PRACTICES

Math TalkDescribe what is being compared and explain how the comparison model relates to the equation.

Example Draw a model and write an equation to solve.

Miguel has 3 times as many rabbits as Sara. Miguel has 6 rabbits. How many rabbits does Sara have?

- How many rabbits does Miguel have?
- How many rabbits does Sara have?

MODEL

Think: You don't know how many rabbits Sara has. Use n for Sara's rabbits.

RECORD

Use the model to write an equation and solve.
$6=$ \qquad \times \qquad
$6=3 \times$ \qquad Think: 3 times what number equals 6?
The value of n is 2 .
Think: n is how many rabbits Sara has.

So, Sara has 2 rabbits.

Try This! Write an equation or a comparison sentence.

Write an equation.
21 is 7 times as many as 3 .
\qquad $=$ \qquad \times \qquad

B Write a comparison sentence.
$8 \times 5=40$
\qquad times as many as \qquad is \qquad .

Share and Show MATH

1. There are 8 students in the art club. There are 3 times as many students in chorus. How many students are in chorus?

Write an equation and solve.
$n=$ \qquad \times \qquad
$n=$ \qquad
The value of n is \qquad .

So, there are \qquad students in chorus.

Name \qquad

Draw a model and write an equation.
2. 6 times as many as 2 is 12 .
\qquad
\qquad
4. 3 times as many as 9 is 27 .
\qquad
3. 20 is 4 times as many as 5 .
\qquad
\qquad
\qquad
5. 48 is 8 times as many as 6 .
\qquad
\qquad
\qquad

Write a comparison sentence.

6. $18=9 \times 2$
\qquad is \qquad times as many as \qquad . 1
7. $8 \times 4=32$
\qquad times as many as \qquad is \qquad .

On Your Own

Write a comparison sentence.
8. $5 \times 7=35$
9. $54=6 \times 9$
\qquad times as many as \qquad is \qquad . \qquad is \qquad times as many as \qquad .
\square
Write an equation.
10. 3 times as many as 7 is 21 .
11. 40 is 5 times as many as 8 .

UNLOCK the Problem REAL WORLD

12. Luca has 72 baseball cards. This is 8 times as many cards as Han has. How many baseball cards does Han have?
(A) 7
(B) 9
(C) 10
(D) 12
a. What do you need to find? \qquad
\qquad
b. How can you use a model to find the number of cards Han has?
\qquad
C. Draw the model.
d. Write an equation and solve.
\qquad $=$ \qquad \times \qquad
\qquad $=$ \qquad
So, Han has \qquad baseball cards.
e. Fill in the bubble for the correct answer choice.
13. Which equation best represents the comparison sentence?

18 is 2 times as many as 9 .
(A) $18 \times 2=9$
(B) $18=2 \times 9$
(C) $18=9+2$
(D) $2+9=18$
14. Which comparison sentence best represents the equation?
$8 \times 4=32$
(A) 8 more than 4 is 32 .
(B) 4 is 8 times as many as 32 .
(C) 8 is 4 times as many as 32 .
(D) 32 is 8 times as many as 4 .
\qquad

Comparison Problems

Essential Question How does a model help you solve a
comparison problem?

UNLOCK the Problem

Evan's dog weighs 7 times as much as Oxana's dog. Together, the dogs weigh 72 pounds. How much does Evan's dog weigh?

\int Example 1 Use a multiplication model.

STEP 1 Draw a model. Let n represent the unknown.
Think: Let n represent how much Oxana's dog weighs. Together, the dogs weigh 72 pounds.

STEP 2 Use the model to write an equation. Find the value of n.
\qquad $\times n=$ \qquad Think: There are 8 parts. The parts together equal 72.
$8 \times$ \qquad $=72$

Think: What times 8 equals 72 ?
The value of n is 9 .
n is how much \qquad weighs.

STEP 3 Find how much Evan's dog weighs.
Think: Evan's dog weighs 7 times as much as Oxana's dog.
Evan's dog = \qquad \times \qquad Multiply.
$=$ \qquad
So, Evan's dog weighs 63 pounds. know you have found the weight of Evan's dog.

To find how many times as much, use a multiplication model. To find how many more or fewer, model the addition or subtraction.

Evan's dog weighs 63 pounds. Oxana's dog weighs 9 pounds. How much more does Evan's dog weigh than Oxana's dog?

Q Exampe 2 Use an addition or subtraction model.

STEP 1 Draw a model. Let n represent the unknown.
Think: Let n represent the difference.

STEP 2 Use the model to write an equation. Find the value of n.

The value of n is \qquad .
n is \qquad .

So, Evan's dog weighs 54 pounds more than Oxana's dog.

Share and Show
 MATH BOARD

1. Maria's dog weighs 6 times as much as her rabbit. Together solve a comparison problem. the pets weigh 56 pounds. What does Maria's dog weigh?

Draw a model. Let n represent the unknown.

Write an equation to find the value of $n .7 \times n=$ \qquad . n is \qquad pounds.

Multiply to find how much Maria's dog weighs. $8 \times 6=$ \qquad
So, Maria's dog weighs \qquad pounds.

Name \qquad

Draw a model. Write an equation and solve.
2. Last month Kim trained 3 times as many dogs as cats. If the total number of cats and dogs she trained last month is 28, how many cats did Kim train?

Draw a model.
Write an equation and solve.
\qquad
\qquad
\qquad
\qquad
3. How many more dogs than cats did Kim train?

Draw a model.
Write an equation and solve.
\qquad
\qquad
\qquad
\qquad

On Your Own

Practice: Copy and Solve Draw a model.

Write an equation and solve.
4. At the dog show, there are 4 times as many boxers as spaniels. If there are a total of 30 dogs, how many dogs are spaniels?
6. Ben has 3 times as many guppies as goldfish. If he has a total of 20 fish, how many guppies does he have?
5. There are 5 times as many yellow labs as terriers in the dog park. If there are a total of 18 dogs, how many dogs are terriers?
7. Carlita saw 5 times as many robins as cardinals while bird watching. She saw a total of 24 birds. How many more robins did she see than cardinals?

Problem Solving REAL WORLD

8. Write Math To get to a dog show, Mr. Luna first drives 7 miles west from his home and then 3 miles north. Next, he turns east and drives 11 miles. Finally, he turns north and drives 4 miles to the dog show. How far north of Mr. Luna's home is the dog show?

To solve the problem, Dara and Cliff drew diagrams. Which diagram is correct? Explain.
\qquad
\qquad
\qquad
\qquad
\qquad
9. Valerie and Bret have a total of 24 dog show ribbons. Bret has twice as many ribbons as Valerie. How many ribbons does each have?
\qquad
\qquad
10. H.O. Noah built a fenced dog run that is 8 yards long and 6 yards wide. He placed posts at every corner and every yard along the length and width of the run. How many posts did he use?
11. Test Prep Brett and his mom paid $\$ 36$ to attend a dog show. An adult ticket was 3 times the cost of a child's ticket. How much was an adult ticket?
(A) $\$ 39$
(B) $\$ 36$
(C) $\$ 27$
(D) $\$ 9$

SHOW YOUR WORK

\qquad

Multiply Tens, Hundreds, and Thousands

Essential Question How does understanding place value help you
multiply tens, hundreds, and thousands?

UNLOCK the Problem REAL wORLD

Each car on a train has 200 seats. How many seats are on a train with 8 cars?

Find 8×200.

I One Way Draw a quick picture.

Think: 10 hundreds $=1,000$

Think: 6 hundreds $=600$
$1,000+600=$ \qquad

P Another Way Use place value.

$8 \times 200=8 \times$ \qquad hundreds
$=$ \qquad hundreds
$=$ \qquad Think: 16 hundreds is 1 thousand, 6 hundreds.

So, there are \qquad seats on a train with 8 cars.

	Mathematical practices
Math Talk	lain how
finding 8 find 8×2	$\times 2$ can help you 00.

P Other Ways

(A) Use a number line.

Bob's Sled Shop rents 4,000 sleds each month. How many sleds does the store rent in 6 months?

Find $6 \times 4,000$.
Multiplication can be thought of as repeated addition. Draw jumps to show the product.

$6 \times 400=2,400$
$6 \times 4,000=24,000$

So, Bob's Sled Shop rents \qquad sleds in 6 months.

B Use patterns.

Basic fact:

$$
\begin{aligned}
3 \times 7 & =21 \quad \leftarrow \text { basic fact } \\
3 \times 70 & =210 \\
3 \times 700 & =
\end{aligned}
$$

$3 \times 7,000=$ \qquad

Basic fact with a zero:

$$
\begin{aligned}
8 \times 5 & =40 \quad \leftarrow \text { basic fact } \\
8 \times 50 & =400 \\
8 \times 500 & = \\
8 \times 5,000 & =
\end{aligned}
$$

- How does the number of zeros in the product of 8 and 5,000 compare to the number of zeros in the factors? Explain.
\qquad

Share and Show

1. Use the drawing to find 2×500.

$2 \times 500=$ \qquad
Complete the pattern.
2. $3 \times 8=24$
3. $6 \times 2=12$
$6 \times 20=$ \qquad
4. $4 \times 5=$ \qquad
$3 \times 80=$ \qquad
$3 \times 800=$ \qquad $6 \times 200=$ \qquad
$4 \times 50=$ \qquad
$4 \times 500=$ \qquad
$3 \times 8,000=$ \qquad
$6 \times 2,000=$ \qquad
\qquad

Find the product.
5. $6 \times 500=6 \times$ \qquad hundreds
$=$ \qquad hundreds
$=$ \qquad
6. $9 \times 5,000=9 \times$ \qquad thousands
$=$ \qquad thousands
$=$ \qquad
7. $9 \times 8,000=9 \times$ \qquad thousands

$$
=
$$

\qquad thousands

$$
=
$$

\qquad
8. $8 \times 7,000=8 \times$ \qquad thousands
$=$ \qquad thousands
$=$ \qquad

On Your Own

Find the product.
9. $7 \times 6,000=$ \qquad 10. $4 \times 80=$ \qquad 11. $6 \times 30=$ \qquad
12. $9 \times 300=$ \qquad 13. $5 \times 2,000=$ \qquad 14. $3 \times 500=$ \qquad

H.O.T. 3 Algebra Find the missing factor.

15. \qquad $\times 9,000=63,000$
16. $7 \times$ \qquad $=56,000$
17. $8 \times$ \qquad $=3,200$

UNLOCK the Problem REAL WORLD

18. Joe's Fun and Sun rents beach chairs.

The store rented 300 beach chairs each month in April and in May. The store rented 600 beach chairs each month from June through September. How many beach chairs did the store rent during the 6 months?
(A) 1,200
(C) 3,000
(B) 2,400
(D) 5,400

a. What do you need to know? \qquad
\qquad
b. How will you find the number of beach chairs? \qquad
\qquad
c. Show the steps you use to solve the problem.
d. Complete the sentences.

For April and May, a total of \qquad beach chairs were rented.

For June through September, a total of
\qquad beach chairs were rented.

Joe's Fun and Sun rented \qquad beach chairs during the 6 months.
e. Fill in the bubble for the correct answer choice above.
19. Carmen has three $\$ 20$ bills and five $\$ 10$ bills. How much money does she have?
20. Dan has 7 rolls of pennies. Each roll has 50 pennies. How many pennies does he have?
(A) 57
(C) 350
(B) 300
(D) 400
\qquad

Estimate Products

Essential Question How can you estimate products by rounding and determine if exact answers are reasonable?

UNLOCK the Problem REAL wORLD

An elephant can reach as high as 23 feet with its trunk. It uses its trunk to pick up objects that weigh up to 3 times as much as a 165-pound person. About how much weight can an African elephant pick up with its trunk?

P One Way Estimate by rounding.

STEP 1 Round the greater factor to the nearest hundred.
3×165
3×200

STEP 2 Use mental math.
Think: $3 \times 200=3 \times 2$ hundreds
$=6$ hundreds
$=$ \qquad

So, an African elephant can pick up about 600 pounds with its trunk.
(1) Another Way Estimate by finding two numbers the exact answer is between.
3×165
3×165
$3 \times 100=$ \qquad $3 \times 200=$ \qquad
Think: 165 is between 100 and 200. Use those numbers to estimate.

So, the African elephant can pick up between 300 and 600 pounds.

1. Is 200 less than or greater than 165 ? \qquad
2. So, would the product of 3 and 165 be less than or greater than $600 ?$ \qquad

Describe Reasonableness You can estimate a product to find whether an exact answer is reasonable.
(T) Tell whether an exact answer is reasonable.

Eva's horse eats 86 pounds each week. Eva solved the equation below to find how much feed she needs for 4 weeks.
$4 \times 86=$ \qquad
Eva says she needs 344 pounds of feed.
Is her answer reasonable?

One Way Estimate.

```
    4\times86
         Think: Round to the nearest ten.
\(\times\)
``` \(\qquad\)
\(\qquad\)
\(\qquad\)
344 is close to 360 .

\section*{Another Way find two numbers the exact answer} is between.

\(\qquad\) is between \(\qquad\) and \(\qquad\) .

So, 344 pounds of feed is reasonable.

\section*{Share and Show \\ MATH \\ BOARD} Math Talk

Is an exact answer of 11,065 reasonable? Explain.
1. Estimate the product by rounding.

2. Estimate the product by finding two numbers the exact answer is between.
\[
5 \times 2,213 \quad 5 \times 2,213
\]
\(\qquad\) \(\times\) \(\qquad\) \(=\) \(\qquad\)
\(\qquad\) \(\times\) \(\qquad\) \(=\)

Name
Tell whether the exact answer is reasonable.
3. Kira needs to make color copies of a horse show flyer. The printer can make 24 copies in 1 minute. Kira says the printer makes 114 copies in 6 minutes.
4. Jones Elementary is having a car wash to raise money for a community horse trail. Each car wash ticket costs \$8. Tiara says the school will receive \(\$ 1,000\) if 125 tickets are sold.
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{On Your Own}

Tell whether the exact answer is reasonable.
5. Mrs. Hense sells a roll of coastal Bermuda horse hay for \(\$ 58\). She says she will make \(\$ 174\) if she sells 3 rolls.
\(\qquad\)
\(\qquad\)
\(\qquad\)
7. A walking path for horses is 94 feet long. Carlos says that if a horse walks the length of the path 3 times, it will have walked 500 feet.
\(\qquad\)
(A) 300 and 400
(B) 700 and 1,200
(C) 600 and 1,000
(D) 1,200 and 1,600
8. Test Prep Which shows the two estimates that the exact answer is between?
\[
4 \times 389
\]

\section*{Connect tol Reading}

\section*{Make Predictions}

As you read a story, you make predictions about what might happen next or about how the story will end.

When you solve a math problem, you make predictions about what your answer might be.

An estimate is a prediction because it helps you to determine whether your answer is correct. For some problems, it is helpful to make two estimates-one that is less than the exact answer and one that is greater.
H.O.I. Predict whether the exact answer will be less than or greater than the estimate. Explain your answer.
9. The food stand at the zoo sold 2,514 pounds of hamburger last month. The average cost of a pound of hamburger is \$2. Jeremy estimates that about \$6,000 worth of hamburger was sold last month.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
10. A zoo bought 2,240 pounds of fresh food for the bears this month. The average cost of a pound of food is \(\$ 4\). Jeremy estimates that about \$8,000 was spent on fresh food for the bears this month.
\(\qquad\)
\(\qquad\)

\section*{Multiply Using the Distributive Property}

Essential Question How can you use the Distributive Property to multiply a
2-digit number by a 1-digit number?

\section*{Investigate}

Materials \(■\) color pencils, grid paper
You can use the Distributive Property to break apart numbers to make them easier to multiply.

The Distributive Property states that multiplying a sum by a number is the same as multiplying each addend by the number and then adding the products.

A. Outline a rectangle on the grid to model \(6 \times 13\).
B. Think of 13 as \(5+8\). Break apart the model to show \(6 \times(5+8)\). Label and shade the smaller rectangles. Use two different colors.

Use the Distributive Property. Find the product each smaller rectangle represents. Then find the sum of the products. Record your answers.
\(\qquad\) \(\times\) \(\qquad\) \(=\) \(\qquad\)
\(\qquad\) \(\times\) \(\qquad\) \(=\) \(\qquad\)

\(\qquad\) \(+\) \(\qquad\)
\(\qquad\)
C. Model \(6 \times 13\) again. Think of 13 as a different sum. Break apart the model to show \(6 \times(\) \(\qquad\) \(+\) \(\qquad\)).
Find the product each smaller rectangle represents. Then find the sum of the products. Record your answers.
\(\qquad\) \(\times\) \(\qquad\) \(=\) \(\qquad\)

\(\qquad\) \(\times\) \(\qquad\) \(=\) \(\qquad\)
\(\qquad\) \(+\) \(\qquad\) \(=\) \(\qquad\) _

\section*{Draw Conclusions}
1. Explain how you found the total number of squares in each model in Steps B and C.
\(\qquad\)
\(\qquad\)
\(\qquad\)
2. Compare the sums of the products in Steps \(B\) and \(C\) with those of your classmates. What can you conclude?
\(\qquad\)
\(\qquad\)
3. H.O.I. Evaluate To find \(7 \times 23\), is it easier to break apart the factor, 23 , as \(20+3\) or \(15+8\) ? Explain.
\(\qquad\)
\(\qquad\)

\section*{Make Connections}

Another way to model the problem is to use base-ten
blocks to show tens and ones.

\section*{STEP 1}

Use base-ten blocks to model \(6 \times 13\).

6 rows of 1 ten 3 ones

STEP 2
Break the model into tens and ones.

\section*{STEP 3}

Add the tens and the ones to find the product.

\((6 \times 10)+(6 \times 3)\)
\[
60+18
\]
\(\qquad\)

So, \(6 \times 13=78\).
In Step 2, the model is broken into two parts. Each part shows a partial product. The partial products are 60 and 18 . into tens and ones make finding the product easier?

Name \(\qquad\)

\section*{Share and Show}

Model the product on the grid. Record the product.
1. \(3 \times 13=\) \(\qquad\)

(2. \(5 \times 14=\) \(\qquad\)

Find the product.
3. \(6 \times 14=\) \(\qquad\)
(1)7า7717 (1) 1971771797 1011
 벢)777
4. \(5 \times 18=\) \(\qquad\)

 (1)才才)

\(\qquad\)

 빅)

Use grid paper or base-ten blocks to model the product. Then record the product.
6. \(7 \times 12=\) \(\qquad\)
7. \(5 \times 16=\) \(\qquad\)
8. \(9 \times 13=\) \(\qquad\)
9. \(8 \times 11=\) \(\qquad\)
10. \(3 \times 15=\) \(\qquad\)
11. \(4 \times 12=\) \(\qquad\)
12. \(8 \times 18=\) \(\qquad\)
13. \(2 \times 19=\) \(\qquad\)
14. \(6 \times 17=\) \(\qquad\)
15. \(3 \times 19=\) \(\qquad\)
16. \(7 \times 15=\) \(\qquad\)
17. \(9 \times 16=\) \(\qquad\)
18. Write Math Explain how modeling partial products can be used to find the products of greater numbers.
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Problem Solving REAL WORLD}

\section*{Pose a Problem}
19. Kyle went to a fruit market. The market
sells a wide variety of fruits and vegetables. The picture at the right shows a display of oranges.

Write a problem that can be solved using the picture.

Pose a problem.
\(\qquad\)
Solve your problem.
\(\qquad\)
- Describe how you could change the problem by changing the number of rows of oranges and the number of empty spaces in the picture. Then solve the problem.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Multiply Using Expanded Form}

Essential Question How can you use expanded form to multiply a multidigit number by a 1 -digit number?

\section*{8 UNLOCK the Problem REAL WORLD}

\section*{1 Example 1 Use expanded form.}

Multiply. \(5 \times 143\)
\(5 \times 143=5 \times\) \(\qquad\) \(+\) \(\qquad\) \(+\) \(\qquad\) Write 143 in expanded form.
\[
=(5 \times 100)+\left(\ldots \times{ }^{(}\right)+(\quad \times \quad) \text { Use the Distributive Property. }
\]

SHADE THE MODEL
STEP 1

THINK AND RECORD
Multiply the hundreds.
\((5 \times 100)+(5 \times 40)+(5 \times 3)\)
\(+(5 \times 40)+(5 \times 3)\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{STEP 2} & 100 & 40 & 3 & Multiply the tens. \\
\hline & & & & \((5 \times 100)+(5 \times 40)+(5 \times 3)\) \\
\hline & & & & \(500+\ldots+(5 \times 3)\) \\
\hline
\end{tabular}

So, \(5 \times 143=\) \(\qquad\) .

\section*{P Example 2 use expanded form.}

The gift shop at the animal park orders 3 boxes of toy animals.
Each box has 1,250 toy animals. How many toy animals does the shop order?

Multiply. \(3 \times 1,250\)

\section*{STEP 1}

Write 1,250 in expanded form. Use the Distributive Property.
\(3 \times 1,250=3 \times(\) \(\qquad\) \(+\) \(\qquad\) \(+\) \(\qquad\))
\[
=(3 \times 1,000)+(\square
\] \(\times\) \(\qquad\)) + (\(\qquad\) \(\times\) \(\qquad\))

\section*{STEP 2}

Add the partial products.

So, the shop ordered \(\qquad\) animals.

\section*{Share and Show}
1. Find \(4 \times 213\). Use expanded form.

\(4 \times 213=\) \(\qquad\) \(\times(+\) \(\qquad\) \(+\) \(\qquad\))
\(=(\underline{ }\)
\(\qquad\) \()+(\) \(\qquad\) \(\times \quad\)) \()+(\) \(\qquad\) \(\times\) \(\qquad\) Use the Distributive Property.
\(=\) \(\qquad\) \(+\) \(\qquad\)
\(\qquad\)
\[
=
\]
\(\qquad\)

Record the product. Use expanded form to help.
2. \(4 \times 59=\) \(\qquad\)
3. \(3 \times 288=\) \(\qquad\) product easier.

\section*{On Your Own}

Record the product. Use expanded form to help.
4. \(4 \times 21=\) \(\qquad\)
5. \(6 \times 35=\) \(\qquad\)
6. \(5 \times 479=\) \(\qquad\) 7. \(8 \times 362=\) \(\qquad\)
8. \(7 \times 596=\) \(\qquad\) 9. \(2 \times 3,283=\) \(\qquad\)
10. \(4 \times 2,924=\) \(\qquad\) 11. \(6 \times 4,121=\)

\section*{Problem Solving REAL WORLD}

Use the table for 12-13.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Sacco Nursery Plant Sale} \\
\hline Tree & Regular Price & Discounted Price (4 or more) \\
\hline Flowering Cherry & \$59 & \$51 \\
\hline Italian Cypress & \$79 & \$67 \\
\hline Muskogee Crape Myrtle & \$39 & \$34 \\
\hline Royal Empress & \$29 & \$25 \\
\hline
\end{tabular}
13. H.O.I. What's the Error? Tanya says that the
14.

Write Math What is the greatest possible product of a 2-digit number and a 1-digit number? Explain how you know.
\(\qquad\)
\(\qquad\)
\(\qquad\)
15. Test Prep Which expression shows how to multiply \(5 \times 381\) by using place value and expanded form?
(A) \((5 \times 3)+(5 \times 8)+(5 \times 1)\)
(C) \((5 \times 300)+(5 \times 80)+(5 \times 1)\)
(B) \((5 \times 300)+(5 \times 800)+(5 \times 100)\)
(D) \((5 \times 300)+(5 \times 80)+(5 \times 10)\)
\(\qquad\)

\section*{Multiply Using Partial Products}

Essential Question How can you use place value and partial products to multiply by a 1 -digit number?

\section*{3 UNLOCK the Problem REAL wORLD}

CONNECT How can you use what you know about the Distributive Property to break apart numbers to find products of 3 -digit and 1 -digit numbers?

\section*{I Use place value and partial products.}

Multiply. \(6 \times 182 \quad\) Estimate. \(6 \times 200=\) \(\qquad\)
SHADE THE MODEL
- How can you write 182 as a sum of hundreds, tens, and ones?

THINK AND RECORD
STEP 1

182
\(\stackrel{6}{\leftarrow}\) Multiply the hundreds.
\(6 \times 1\) hundred \(=6\) hundreds

STEP 2

182
\(\begin{array}{r}18 \\ \times \quad 6 \\ \hline 600\end{array}\)
Multiply the tens.
\(6 \times 8\) tens \(=48\) tens

STEP 3

182
\(\begin{array}{r}\times \quad 6 \\ \hline 600\end{array}\) 480

Multiply the ones. \(6 \times 2\) ones \(=12\) ones

STEP 4

182
\(\begin{array}{r}\mathbf{6} \\ \times \quad 6 \\ \hline 600\end{array}\)
480
\(\begin{array}{r}+\quad 12 \\ \hline\end{array}\) \(\leftarrow\) Add the partial products.

So, \(6 \times 182=1,092\). Since 1,092 is close to the estimate of 1,200 , it is reasonable.

\section*{1 Example}

Use place value and partial products.
Multiply. \(2 \times 4,572 . \quad\) Estimate. \(2 \times 5,000=\) \(\qquad\)
\begin{tabular}{rl}
\begin{tabular}{r}
4,572 \\
\(\times \quad 2\)
\end{tabular} & \\
& \(\leftarrow 2 \times 4\) thousands \(=8\) thousands \\
& \(\leftarrow 2 \times 5\) hundreds \(=1\) thousand \\
& \(\leftarrow 2 \times 7\) tens \(=1\) hundred, 4 tens \\
+ & \(\leftarrow 2 \times 2\) ones \(=4\) ones \\
& \(\leftarrow\) Add the partial products.
\end{tabular}

\section*{Share and Show \\ MATH \\ BOARD}
1. Use the model to find \(2 \times 137\).

Estimate. Then record the product.
2. Estimate: \(\qquad\) \(\begin{array}{r}190 \\ \times \quad 3 \\ \hline \\ +\quad \\ \hline\end{array}\)
3. Estimate:

4. Estimate:

MATHEMATICAL PRACTICES
Math Talk place value and expanded form makes it easier to find products.

Name \(\qquad\)

\section*{On Your Own}

Estimate. Then record the product.
5. Estimate: \(\qquad\)

6. Estimate: \(\qquad\)

Estimate. Then record the product.
8. Estimate: \(\qquad\)
\(\qquad\)
9. Estimate: \(\begin{array}{r}738 \\ \times \quad 5 \\ \hline\end{array}\)

\(\qquad\)
\(\qquad\)
7. Estimate:

10. Estimate: \(\begin{array}{r}4,852 \\ \times \quad 3 \\ \hline\end{array}\)

Practice: Copy and Solve Estimate. Then record the product.
11. \(2 \times 78\)
12. \(2 \times \$ 210\)
13. \(9 \times \$ 682\)
14. \(8 \times 8,145\)

Algebra Find the missing digit.
15. 5
\[
\begin{array}{r}
\times \quad 7 \\
\hline 455
\end{array}
\]
16. 248

3
\(\times \quad 34\)
17. \(\$ 395\)
\(\frac{\times}{\$ 2,370}\)
18. 3,748
4
\(\times \quad, 992\)

\section*{Problem Solving REAL wORLD}
19. Look at the picture. Kylie has 832 songs on her portable media player. Lance has 3 times as many songs. How many fewer songs can Lance add to his player than Kylie can add to hers?
20. H.O.I. The sum of a 3-digit number and a 1 -digit number is 217 . The product of the numbers is 642 . If one number is between 200 and 225 , what are the numbers?
21. H.O.I. What's the Error? Hal says that the greatest product of a 3-digit number and a 1 -digit number is 8,891 . Is he correct? Explain.
\(\qquad\)
22. Test Prep Mrs. Jackson bought 6 gallons of juice for a party. Each gallon has 16 cups. If 3 cups of juice were left over, how many cups did people drink at the party?
(A) 13 cups
(C) 78 cups
(B) 48 cups
(D) 93 cups

\(\qquad\)

\section*{Mid-Chapter Checkpoint}

\section*{Vocabulary}

Choose the best term from the box to complete the sentence.

Vocabulary
Distributive Property
factor
partial products the sum of each \(\qquad\) (p.62)
2. The \(\qquad\) states that multiplying a sum by a number is the same as multiplying each addend by the number and then adding the products. (p.61)

\section*{Concepts and Skills}

\section*{Write a comparison sentence.}
3. \(5 \times 9=45\)
\(\qquad\) times as many as \(\qquad\) is \(\qquad\) .
5. \(54=6 \times 9\)
\(\qquad\) is \(\qquad\) times as many as \(\qquad\) .
4. \(24=6 \times 4\)
\(\qquad\) is \(\qquad\) times as many as \(\qquad\) .
6. \(8 \times 6=48\)
\(\qquad\) times as many as \(\qquad\) is \(\qquad\) .

Estimate. Then record the product.
7. Estimate: \(\qquad\) 8. Estimate: \(\qquad\)

12
\(\begin{array}{r}6 \\ \times \\ \hline\end{array}\)
9. Estimate: \(\qquad\)
\(\square\)
28
\(\times 3\)
10. Estimate: \(\qquad\)

Record the product. Use expanded form to help.
11. \(5 \times 64=\) \(\qquad\)
12. \(3 \times 272=\) \(\qquad\)

Fill in the bubble completely to show your answer.
13. There are 6 times as many dogs as cats. If the total number of dogs and cats is 21 , how many dogs are there?
(A) 3
(B) 6
(C) 15
(D) 18
14. The table below shows the number of calories in 1 cup of different kinds of berries. How many calories are in 4 cups of blackberries?
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Berry Nutrition } \\
\hline Berry & \begin{tabular}{c}
Number of Calories \\
in 1 Cup
\end{tabular} \\
\hline Blackberries & 62 \\
\hline Blueberries & 83 \\
\hline Raspberries & 64 \\
\hline Strawberries & 46 \\
(A) 62 \\
(B) 83 \\
(C) 248 \\
(D) 308
\end{tabular}
15. The skating rink rents 200 pairs of skates in a month.

How many pairs of skates does the rink rent in 4 months?
(A) 800
(B) 600
(C) 400
(D) 200
\(\qquad\)

\section*{Multiply Using Mental Math}

Essential Question How can you use mental math and properties to help
you multiply numbers?

\section*{UNLOCK the Problem REAL WORLD}

Properties of Multiplication can make multiplication easier.
There are 4 sections of seats in the Playhouse Theater. Each section has 7 groups of seats.
Each group has 25 seats. How many seats are there in the theater?

(9)
Find \(4 \times 7 \times 25\).
\(4 \times 7 \times 25=4 \times 25 \times 7\)
Commutative Property
\(=\) \(\qquad\) \(\times 7\)

Think: \(4 \times 25=100\)
Think: \(100 \times 7=700\)
So, there are 700 seats in the theater.

\(\qquad\)

\section*{Try This! Use mental math and properties.}
(A) Find \((6 \times 10) \times 10\).
\[
\begin{aligned}
(6 \times 10) \times 10 & =6 \times(10 \times 10) \quad \text { Associative Property } \\
& =6 \times \\
& =
\end{aligned}
\]
(B) Find \((4 \times 9) \times 250\).
\[
\begin{aligned}
(4 \times 9) \times 250 & =250 \times(4 \times 9) \quad \text { Commutative Property } \\
& =(250 \times 4) \times 9 \quad \text { Associative Property } \\
& =\square \times 9 \\
& =\square
\end{aligned}
\]

More Strategies Choose the strategy that works best with the numbers in the problems.

\section*{1 Examples}

A Use friendly numbers.
Multiply. \(24 \times 250\)
Think: \(24=6 \times 4\) and \(4 \times 250=1,000\)
\(24 \times 250=6 \times 4 \times 250\)
\(=6 \times\) \(\qquad\)
\(=\) \(\qquad\)

C Use addition.
Multiply. \(4 \times 625\)
Think: 625 is 600 plus 25 .
\[
\begin{aligned}
4 \times 625 & =4 \times(600+25) \\
& =(4 \times 600)+(4 \times 25) \\
& =
\end{aligned}
\]
\[
=
\]
\(\qquad\)

B Use halving and doubling.
Multiply. \(16 \times 50\)
Think: 16 can be divided evenly by 2 .
\(16 \div 2=8\)
Find half of 16 .
\(8 \times 50=\) \(\qquad\) Multiply.
\(2 \times 400=\) \(\qquad\) Double 400.
(D) Use subtraction.

Multiply. \(5 \times 398\)
Think: 398 is 2 less than 400.
\(5 \times 398=5 \times(400-2)\)
\[
\begin{aligned}
& =(5 \times \ldots \quad)-(5 \times 2) \\
& =2,000-\quad \\
& =
\end{aligned}
\]
- What property is being used in Examples \(C\) and \(D\) ? \(\qquad\)

\section*{Share and Show}
1. Break apart the factor 112 to find \(7 \times 112\) by using mental math and addition.
\[
\begin{equation*}
7 \times 112=7 \times 1 \tag{+12}
\end{equation*}
\]
\(=\) \(\qquad\)
\(=\) \(\qquad\)
\(=\) \(\qquad\)

Name \(\qquad\)

Find the product. Tell which strategy you used.
2. \(4 \times 6 \times 50\)
3. \(5 \times 420\)
4. \(6 \times 298\)

MATHEMATICAL PRACTICES

\section*{On Your Own} addition strategy is related to using a subtraction strategy.
Find the product. Tell which strategy you used.
5. \(14 \times 50\)
\(\qquad\)
\(\qquad\)
8. \(4 \times 15 \times 25\)
15. \(21 \times 40=840\), so \(21 \times 42=\)
6. \(32 \times 25\)
\(\qquad\)
\(\qquad\)
9. \(5 \times 198\)
10. \(5 \times 250\)

Practice: Copy and Solve Use a strategy to find the product.
7. \(14 \times 25 \times 4\)
10. \(5 \times 250\)
\(\qquad\)
\(\qquad\)
11. \(16 \times 400\)
12. \(3 \times 31 \times 10\)
13. \(3 \times 199\)
14. \(3 \times 1,021\)
H.O.T. Algebra Use mental math to find the unknown number.
\(\qquad\) .
16. \(9 \times 60=540\), so \(18 \times 30=\) \(\qquad\) .

\section*{Problem Solving REAL WORLD}

Use the table for 17-18.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Arena Ticket Prices Per Game } \\
\hline Section & \begin{tabular}{c}
Full \\
Season
\end{tabular} & \begin{tabular}{c}
15-Game \\
Plan
\end{tabular} & \begin{tabular}{c}
Gate \\
Price
\end{tabular} \\
\hline K & \(\$ 44\) & \(\$ 46\) & \(\$ 48\) \\
\hline L & \(\$ 30\) & \(\$ 32\) & \(\$ 35\) \\
\hline M & \(\$ 25\) & \(\$ 27\) & \(\$ 30\) \\
\hline N & \(\$ 20\) & \(\$ 22\) & \(\$ 25\) \\
\hline
\end{tabular}
17. Three thousand, forty-three people buy tickets
 at the gate for Section \(N\). How much money is collected for Section N at the gate?
18. Tina and 3 of her friends buy the full season plan for Section M. If there are 45 games in the full season, how much money do they spend?
19. W.O.T. What's the Error? Louisa says that \(40 \times 3,210\) is 12,840 . Describe and correct her error.
\(\qquad\)
\(\qquad\)
\(\qquad\)
20. Test Prep Which of the following shows a strategy to use to find \(3 \times 198\) ?
(A) \((3 \times 200)-(3 \times 2)\)
(B) \((3 \times 200)+(3 \times 2)\)
(C) \((3 \times 198)-6\)
(D) \(198-6\)

\section*{Problem Solving•Multistep Multiplication Problems}

Essential Question When can you use the draw a diagram strategy to solve a multistep multiplication problem?

\section*{1 UNLOCK the Problem}

At the sea park, one section in the stadium has 9 rows with 18 seats in each row. In the center of each of the first 6 rows, 8 seats are in the splash zone. How many seats are not in the splash zone?

Use the graphic organizer to help you solve the problem.

\section*{Read the Problem}

\section*{What do I need to find?}

I need to find the number of seats that
\(\qquad\) in the splash zone.

What information do I need to use?
There are 9 rows with \(\qquad\) seats in each row of the section.

There are 6 rows with \(\qquad\) seats in each row of the splash zone.

\section*{How will I use the information?}

I can \(\qquad\) to find both the number of seats in the section and the number of seats in the splash zone.

\section*{Solve the Problem}

I drew a diagram of the section to show 9 rows of 18 seats. In the center, I outlined a section to show the 6 rows of 8 seats in the splash zone.

1. What else do you need to do to solve the problem?

\section*{I Try Another Problem}

At the sea park, one section of the shark theater has 8 rows with 14 seats in each row. In the middle of the section, 4 rows of 6 seats are reserved. How many seats are not reserved?

Read the Problem
What do I need to find?

What information do I need to use?

How will I use the information?
2. How did your diagram help you solve the problem?
\(\qquad\)
Math Talk Explain how you can check your answer.

\section*{Name}

\section*{UNLOCK the Problem}

\section*{Share and Show}
1. The seats in Sections \(A\) and \(B\) of the stadium are all
\(\checkmark\) Use the Problem Solving MathBoard. \ Underline important facts.
\(\sqrt{ }\) Choose a strategy you know. taken for the last show. Section A has 8 rows of 14 seats each. Section \(B\) has 6 rows of 16 seats each. How many people are seated in Sections \(A\) and \(B\) for the last show?

First, draw and label a diagram. Next, find the number of seats in each section.

Section A
Section B

Last, find the total number of seats. \(\qquad\) \(+\) \(\qquad\) \(=\)

There are \(\qquad\) people seated in Sections \(A\) and \(B\) for the last show.
2. What if Sections \(A\) and \(B\) each had 7 rows? How many people would have been seated in Sections A and B?
3. Carol, Ann, and Liz each bought a toy fish. Carol's fish is 10 inches longer than Ann's fish. Liz's fish is 2 inches longer than twice the length of Ann's fish. Ann's fish is 12 inches long. Find the length of each toy fish.
4. There are 8 rows of 22 chairs set up for an awards ceremony at the school. In each row, the 2 chairs on each end are reserved for students receiving awards. The rest of the chairs are for guests. How many chairs are there for guests?

\section*{On Your Own}

\section*{Use the graph for 5-6.}
5. Mr. Torres took his students to the dolphin show. Each row in the stadium had 11 seats. One adult sat at each end of a row, and each group of 4 students was seated between 2 adults. Mr. Torres sat by himself. How many adults were there?
6. Write Math Another stadium section has 24 rows of 10 seats each. Describe at least two ways Mrs. Allen's class can sit if an equal number of students sits in each row.
\(\qquad\)
\(\qquad\)
\(\qquad\)
7. Kari, Juan, Tami, and Brad are the first four people in line to see the Open Ocean exhibit. Kari is not first in line. Tami has at least two people ahead of her in line. Juan is third. Give the order of the first four people in line.
8. H.O.I. Nell made a secret code. Each code word has 2 letters. Each word begins with a consonant and ends with a vowel. How many code words can Nell make with 3 consonants and 2 vowels?
9. Test Prep A teacher has 29 students in her class. She gives each student 3 stickers and has no stickers left over. How many stickers did she have?
(A) 67
(B) 78
(C) 87
(D) 88

\section*{SHOW YOUR WORK}
\(\qquad\)

\section*{Multiply 2-Digit Numbers}

\section*{with Regrouping}

Essential Question How can you use regrouping to multiply a 2-digit
number by a 1 -digit number?

\section*{UNLOCK the Problem REAL wORLD}

A Thoroughbred racehorse can run at speeds of up to 60 feet per second. During practice, Celia's horse runs at a speed of 36 feet per second. How far does her horse run in 3 seconds?
- Underline important information.
- Is there information you will not use? If so, cross out the information.

\section*{P Example 1}

Multiply. \(3 \times 36\) Estimate. \(3 \times 40=\) \(\qquad\)
MODEL
THINK
RECORD

\section*{STEP 1}
(1)
(1)

Multiply the ones.
\(3 \times 6\) ones \(=18\) ones
Regroup the 18 ones.

STEP 2

Multiply the tens. \(3 \times 3\) tens \(=9\) tens Add the regrouped ten. 9 tens +1 ten \(=10\) tens

1
3610 tens is the \(\begin{array}{r} \\ \times 3 \\ \hline\end{array}\) 108
same as 1 hundred 0 tens.

So, Celia's racehorse runs \(\qquad\) feet in 3 seconds. Since \(\qquad\) is close to the estimate of \(\qquad\) the answer is reasonable.
 the regrouping of the 18 ones.

\section*{1 Example 2}

Multiply. \(8 \times 22\) Estimate. \(8 \times 20=\) \(\qquad\)

MODEL
- - - - -
(1) 17171717

ㄴ) (1) 7171717 !
(1)

Multiply the ones.
\(8 \times 2\) ones \(=16\) ones
Regroup the 16 ones.

THINK
nes

RECORD
STEP 1

\section*{(1) 11717}
(1) 1777717 (1) 177777

12 Regroup
\begin{tabular}{r}
8 \\
\hline 6 \\
16 ones as
\end{tabular}
1 ten 6 ones.
\(\qquad\)

STEP 2

Multiply the tens.
\(8 \times 2\) tens \(=16\) tens

Add the regrouped ten.
16 tens +1 ten \(=17\) tens

176
\(\times 8\) the same as 1
17 tens is hundred 7 tens.

So, \(8 \times 22=\) \(\qquad\) Since \(\qquad\) is close to the estimate
of \(\qquad\) it is reasonable.

Try This! Multiply. \(7 \times \$ 68\)

- Look at the partial products and regrouping methods above.

How are the partial products 420 and 56 related to 476 ?
\(\qquad\)

\section*{Share and Show}

BOARD
1. Use the model to find the product.
\[
2 \times 36=
\]
\(\qquad\)
Estimate. Then record the product.
2. Estimate: \(\qquad\) 3. Estimate: \(\qquad\) © 4. Estimate: \(\qquad\) 5. Estimate: \(\qquad\)
\[
\begin{array}{r}
81 \\
\times \quad 5 \\
\hline
\end{array}
\]

MATHEMATICAL PRACTICES

\section*{On Your Own}

Estimate. Then record the product.
6. Estimate: \(\qquad\) \(\begin{array}{r}33 \\ \times \quad 2 \\ \hline\end{array}\)
7. Estimate:

8. Estimate: \(\qquad\)
\[
\begin{array}{r}
36 \\
\times \quad 8 \\
\hline
\end{array}
\]
9. Estimate: \(\qquad\) \(\$ 94\)

Practice: Copy and Solve Estimate. Then record the product.
10. \(3 \times 82\)
11. \(9 \times 41\)
12. \(6 \times 75\)
13. \(7 \times \$ 23\)
14. \(8 \times \$ 54\)
15. \(5 \times 49\)
16. \(8 \times 97\)
17. \(4 \times 68\)
18. \(9 \times \$ 68\)
19. \(6 \times \$ 73\)

5H.O.T. 3
Algebra Write a rule. Find the unknown numbers.
20.
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline Carton & & 1 & 2 & 3 & 4 & 5 \\
\hline Eggs & & 12 & 24 & & 48 & \\
\hline
\end{tabular}
21.
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline Row & - & 2 & 3 & 4 & 5 & 6 \\
\hline Seats & & 32 & 48 & 64 & & \\
\hline
\end{tabular}

\section*{Problem Solving REAL WORLD}

Use the table for 22-23.
22. At the speeds shown, how much farther could a black-tailed jackrabbit run than a desert cottontail in 7 seconds?
23. A black-tailed jackrabbit hops about 7 feet in a single hop. How far can it hop in 5 seconds?
24. Mr. Wright bought a 3-pound bag of cat food and a 5-pound bag of dog food. There are 16 ounces in each pound. How many ounces of pet food did Mr. Wright buy?
25. H.O.I. The sum of two numbers is 31 . The product of the two numbers is 150 . What are the numbers?
26.

Write Math \(6 \times 87\) is greater than \(5 \times 87\). How much greater? Explain how you know without multiplying.
\(\qquad\)
\(\qquad\)
\(\qquad\)
27. Test Prep Mrs. Sawyer bought a book for \(\$ 25\) and 3 toys for \(\$ 13\) each. How much change should she get back from a \(\$ 100\) bill?
(A) \(\$ 26\)
(C) \(\$ 46\)
(B) \(\$ 36\)
(D) \(\$ 56\)

\section*{SHOW YOUR WORK}
\(\qquad\)

\section*{Multiply 3-Digit and 4-Digit Numbers \\ with Regrouping}

Essential Question How can you use regrouping to multiply?

\section*{UNLOCK the Problem REAL wORLD}

Alley Spring, in Missouri, produces an average of 567 million gallons of water per week. How many gallons of water do the springs produce in 3 weeks?

Multiply. \(3 \times 567\)
Estimate. \(3 \times\) \(\qquad\) \(=\) \(\qquad\)

THINK
RECORD

\section*{STEP 1}

Multiply the ones.
\(3 \times 7\) ones \(=\) \(\qquad\) ones
Regroup the 21 ones.

Regroup the 21 ones
\(\times 3\) as 2 tens and 1 one.

\section*{STEP 2}

Multiply the tens.
\(3 \times 6\) tens \(=\) \(\qquad\) tens
Add the regrouped tens.
18 tens +2 tens \(=20\) tens

Regroup the 20 tens.

\section*{STEP 3}

Multiply the hundreds.
\(3 \times 5\) hundreds \(=\) \(\qquad\) hundreds
Add the regrouped hundreds.
15 hundreds +2 hundreds \(=17\) hundreds
\[
\begin{array}{rl}
22 & 17 \text { hundreds is the same as } \\
567 & 17 \\
\times \quad 3 & 1 \text { thousand } 7 \text { hundreds. }
\end{array}
\]

So, Alley Spring produces \(\qquad\) gallons of water in 3 weeks.

\section*{1 Example}

Use an estimate or an exact answer.
The table shows the prices of three vacation packages. Jake, his parents, and his sister want to choose a package.

\section*{Lakefront Vacations}
\begin{tabular}{lcc}
& Adult & Child \\
\hline Package A & \(\mathbf{\$ 1 , 2 9 9}\) & \(\mathbf{\$ 6 1 9}\) \\
Package B & \(\mathbf{\$ 8 4 9}\) & \(\mathbf{\$ 6 9 9}\) \\
Package C & \(\mathbf{\$ 6 9 9}\) & \(\mathbf{\$ 4 8 4}\)
\end{tabular}
(A) About how much would Package \(C\) cost Jake's family?

\section*{STEP 1}

Estimate the cost for 2 adults.
\[
2 \times \$ 699
\]
\(2 \times \$ 700=\) \(\qquad\)

\section*{STEP 3}

Add to estimate the total cost.
\(2 \times \$ 500=\) \(\qquad\)

\section*{STEP 2}

Estimate the cost for 2 children.
\(2 \times \$ 484\)
\(\downarrow\)
\(2 \times \$ 500=\)

So, Package C would cost Jake's family about \(\$ 2,400\).

Explain how you know you can use an estimate.

B Jake's family wants to compare the total costs of Packages A and C. Which plan costs more? How much more does it cost?

Package A
\begin{tabular}{lrl}
& \multicolumn{1}{c}{ Package \(\mathbf{A}\)} & \\
Adults & Children & Total Cost \\
\(\$ 1,299\) & \(\$ 619\) & \\
\(\times \quad 2\) & \(\times \quad 2\) & + \\
\hline
\end{tabular}

Subtract to compare the total costs of the packages.
\[
\begin{array}{r}
\$ 3,836 \\
-\$ 2,366 \\
\hline
\end{array}
\]

Package C
Children Total Cost
\(\qquad\)

\section*{Math Talk}

MATHEMATICAL PRACTICES
Explain why you need an exact answer.

So, Package \(\qquad\) would cost \(\qquad\) more than Package \(\qquad\) .
\(\qquad\)

\section*{Share and Show}
1. Tell what is happening in Step 1

\section*{STEP 1}

STEP 2
STEP 3
STEP 4 of the problem.
\[
\begin{aligned}
& \begin{array}{llll}
1,274 & 1,274 & 1,42 & 1,42 \\
\times 1,274 & 1,274
\end{array} \\
& \begin{aligned}
& \times 6 \\
& 4 \times 6 \\
& 44 \times 6 \\
& 7,644
\end{aligned}
\end{aligned}
\]

\section*{Estimate. Then find the product.}
2. Estimate: \(\qquad\)

3. Estimate: \(\qquad\)
1,935
\(\times \quad 7\)
4. Estimate: \(\qquad\)

MATHEMATICAL PRACTICES
Math Talk
Explain how you can use estimation to find how many digits the product \(4 \times 1,861\) will have.

\section*{On Your Own}

Estimate. Then find the product.
5. Estimate:

8. Estimate: \(\qquad\)

7. Estimate: \(\qquad\) \$4,123

10. Estimate: \(\qquad\)

9. Estimate: \(\qquad\)

6. Estimate: \(\qquad\)

H.O.T. 3 Practice: Copy and Solve Compare. Write \(<_{,}>\), or \(=\).
11. \(5 \times 352\)\(4 \times 440\)
12. \(6 \times 8,167\)\(9,834 \times 5\)
13. \(3,956 \times 4 \bigcirc 5 \times 7,692\)
14. \(740 \times 7 \bigcirc 8 \times 658\)
15. \(4 \times 3,645\)
 \(5 \times 2,834\)
16. \(6,573 \times 2 \bigcirc 4,365 \times 3\)

\section*{Problem Solving REAL WORLD}
17. Look at the table. About how many more people visited the park in 2007 than in 2000?
\(\qquad\)

\section*{Solve Multistep Problems Using Equations}

Essential Question How can you represent and solve multistep problems
using equations?

\section*{UNLOCK the Problem REAL wORLD}

Crismari's computer has 3 memory cards with 64 gigabytes of space each and 2 memory cards with 16 gigabytes of space each. The files on her computer use 78 gigabytes of
- Underline the important information. space. How much memory does her computer have left?

\section*{\(\int\) One Way Use multiple single-step equations.}

STEP 1 Find how much memory is on 3 memory cards with 64 gigabytes of space each.

STEP 2 Find how much memory is on 2 memory cards with 16 gigabytes of space.

\(2 \times 16=p\)
\(\qquad\) \(=p\)

STEP 3 Find the total memory on the computer.

STEP 4 The files use 78 gigabytes of space. Find how much memory the computer has left.

\(224-78=y\)
\(\qquad\)
\(=y\)

So, Crismari has \(\qquad\) gigabytes of memory left on her computer.

Order of Operations The Order of Operations is a special set of rules that gives the order in which calculations are done in an expression. First, multiply and divide from left to right. Then, add and subtract from left to right.

\section*{P Another Way use one multistep equation.}

\[
3 \times 64+2 \times 16-78=n
\]
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) \(=n\)
\[
\begin{aligned}
+\ldots-\ldots & =n \\
-\ldots & =n \\
& =n
\end{aligned}
\]
memory used memory left

\section*{Share and Show \\ MATH \\ BOARD}
1. Use the order of operations to find the value of \(n\).
\(5 \times 17+5 \times 20-32=n\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) \(=n<\) First, multiply \(5 \times 17\).
\(\qquad\) \(+\quad-\) \(\qquad\) \(=n \quad \longleftarrow\) Next, multiply \(5 \times 20\).
\(\qquad\)
\(\qquad\) \(=n\) \(\longleftarrow\) Then, add the two products.
\(\qquad\) \(=n\)
\(\longleftarrow\) Finally, subtract to find \(n\).

Find the value of \(\boldsymbol{n}\).
2. \(3 \times 22+7 \times 41-24=n\)
\(\qquad\)
\[
=n
\]
4. \(2 \times 62+8 \times 22-53=n\)
\(\qquad\) \(=n\)
3. \(4 \times 34+6 \times 40-66=n\)
\(\qquad\)
\[
=n
\]
5. \(6 \times 13+9 \times 34-22=n\)
\(\qquad\) \(=n\)
\(\qquad\)

\section*{On Your Own}

Find the value of \(\boldsymbol{n}\).
6. \(8 \times 42+3 \times 59-62=n\)
\(\qquad\)
\[
=n
\]
7. \(6 \times 27+2 \times 47-83=n\)
\(\qquad\) \(=n\)

\section*{Problem Solving REAL WORLD}
8. Maggie has 3 binders with 25 stamps in each binder. She has 5 binders with 24 baseball cards in each binder. If she gives 35 stamps to a friend, how many stamps and cards does she have left?
9. Maddox has 4 boxes with 32 marbles in each box. He has 7 boxes with 18 shells in each box. If he gets 20 marbles from a friend, how many marbles and shells does he have?
10. Test Prep Trina has 2 bags with 14 pinecones in each bag. She has 7 boxes with 15 acorns in each box. If she trades 5 pinecones for 10 acorns, how many pinecones and acorns does she have?
(A) 28
(C) 133
(B) 105
(D) 138

\section*{What's the Error?}
11. Dominic has 5 books with 12 postcards in each book. He has 4 boxes with 20 coins in each box. If he gives 15 post cards to a friend, how many postcards and coins does he have?

\section*{Dominic drew this model.}

total postcards and coins
15
postcards
given away

Dominic used these steps to solve.
\[
\begin{aligned}
& 5 \times 12+4 \times 20-15=n \\
& 60+4 \times 20-15=n \\
& 64 \times 20-15=n \\
& 1,280-15=n \\
& 1,265=n
\end{aligned}
\]

Look at the steps Dominic used to solve this problem. Find and describe his error.

Use the correct steps to solve the problem.
\(\square\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

So, there are \(\qquad\) postcards and coins left.
\(\qquad\)

\section*{Chapter Review/Test}

\section*{Vocabulary}

\section*{Choose the best term from the box.}
1. To find the product of a 3-digit number and a 1-digit number, you can multiply the ones, multiply the tens, multiply the hundreds, and find the sum of each \(\qquad\) . (p. 62)
2. The \(\qquad\) states that multiplying a sum by a number is the same as multiplying each addend by the number and then adding the products. (p. 61)

\section*{Concepts and Skills}

\section*{Estimate. Then find the product.}
3. Estimate:
\begin{tabular}{r}
55 \\
\(\times \quad 2\) \\
\hline
\end{tabular}
\(\qquad\)
\[
\begin{array}{r}
55 \\
\times \quad 2 \\
\hline
\end{array}
\]
7. Estimate: \(\qquad\) 8. Estimate:
\(\qquad\)

5. Estimate: \(\qquad\)
4. Estimate: \(\qquad\)
\$25

9. Estimate: \(\qquad\)

Vocabulary
Commutative Property Distributive Property partial product
6. Estimate: \(\qquad\)
\[
\$ 924
\]

10. Estimate: \(\qquad\)
8,798

Fill in the bubble completely to show your answer.
11. Which number sentence shows the Distributive Property?
(A) \(2 \times 3=3 \times 2\)
(B) \(5 \times 0=0\)
(C) \(3 \times(5+2)=(3 \times 5)+(3 \times 2)\)
(D) \((3 \times 7) \times 4=3 \times(7 \times 4)\)
12. Look at the pattern below. What is the missing number?
\[
\begin{aligned}
5 \times 6 & =30 \\
5 \times 60 & =300 \\
5 \times 600 & =3,000 \\
5 \times \quad \square & =30,000
\end{aligned}
\]
(A) 8,000
(B) 6,000
(C) 600
(D) 60
13. Which comparison sentence represents the equation?
\[
45=5 \times 9
\]
(A) 9 more than 5 is 45 .
(B) 9 is 5 times as many as 45 .
(C) 5 is 4 times as many as 45 .
(D) 45 is 5 times as many as 9 .
14. There are 4 times as many alligators as crocodiles. If the total number of alligators and crocodiles is 40 , how many alligators are there?
(A) 40
(B) 32
(C) 24
(D) 8

Fill in the bubble completely to show your answer.
15. Gardeners at Seed Stop are planting seeds in 12-row seed trays. They plant 8 seeds in each row. How many plants will there be in each tray if all of the seeds germinate, or grow?
(A) 84
(C) 96
(B) 86
(D) 104
16. Which shows the product of \(4 \times 15 \times 25\) ?
(A) 150
(C) 1,500
(B) 1,200
(D) 1,600
17. A Broadway musical group will have 9 performances. The theater can seat 2,518 people. If all of the seats at each performance are taken, how many people will see the show?
(A) 18,592
(C) 22,662
(B) 22,652
(D) 31,622
18. The table below shows the type of film sold and the number of rolls in one pack at a local gift shop.

\section*{Gift Shop Film}

Type of Film
(pack of 4 rolls)
36 exposures
24 exposures
12 exposures

Hannah buys 3 packs of 36 exposure film and 2 packs of 24 exposure film. She uses 8 rolls of film. How many rolls does she have left?
(A) 8
(C) 20
(B) 12
(D) 24

\section*{Constructed Response}
19. John's grade has 3 classrooms. Each classroom has

14 tables. Two students sit at each table. About how many students are there in all?
Use pictures, words, or numbers to show how you know.

\section*{Performance Task}
20. Justin has \(\$ 450\) to buy supplies for the school computer lab. He buys 8 boxes of printer paper that cost \(\$ 49\) each.
A About how much money does Justin spend on the printer paper? Describe how you made your estimate.

\(\qquad\)
\(\qquad\)
\(\qquad\)
B Find the actual amount of money Justin spends on the printer paper. Explain whether your estimate is close to the actual price.
\(\qquad\)
\(\qquad\)
\(\qquad\)
C Will Justin have enough money left over to buy 3 packages of blank DVDs that cost \(\$ 17\) each? Explain your answer.
\(\qquad\)
\(\qquad\)
\(\qquad\)```

