ATM

Kothe

Week 5, 6 Apr 27 – May 8

4.2 LAWS OF EXPONENTS

SOME OF THE LAWS OF EXPONENTS

Product of Powers Power of a Product Power of a Power

$$a^m \Box a^n$$

$$a^{m+n}$$

keep base & add exponents $(ab)^n$

 a^nb^n

Distribute the exponent to each factor of the product

 $\left(a^{m}\right)^{n}$

 $\alpha^{m \square n}$

keep base &

multiply exponents

EX 1 SIMPLIFY

$$(-3x^2y^3)(4xy^2)$$
$$-3\Box 4x^2xy^3y^2$$

$$-12x^3y^5$$

$$\left(st^4\right)^3$$

$$s^{1\cdot3}t^{4\cdot3}$$

$$s^3t^{12}$$

$$\left(-x^3\right)^2$$

$$\left(-1\right)^{2}\left(x^{3}\right)^{2}$$

$$x^{3\cdot 2}$$

$$x^6$$

EX 2 SIMPLIFY

$$u\Box (u^2)^3\Box u^5$$

$$u \square u^{2\cdot 3} \square u^5$$

$$u^{1+6+5}$$

$$u^{12}$$

$$\left(3xy^2z^3\right)^3$$

$$3^3 x^3 y^{2\cdot 3} z^{3\cdot 3}$$

$$27x^3y^6z^9$$

EX 3 SIMPLIFY

$$3t^{2}(t^{3}-2t^{2}+t-4)$$

$$3t^{2}\Box t^{3}-3t^{2}\Box 2t^{2}+3t^{2}\Box t-4\Box 3t^{2}$$

$$3t^{5}-6t^{4}+3t^{3}-12t^{2}$$

EX 4 SIMPLIFY

(ASSUME THAT VARIABLE EXPONENTS REPRESENT POSITIVE INTEGERS.)

$$(a^{2})^{k} (a^{k})^{3} \qquad x^{m-n} (x^{m+n} + x^{n})$$

$$a^{2k} \square a^{3k} \qquad x^{m-n+m+n} + x^{m-n+n}$$

$$a^{5k} \qquad x^{m+m} + x^{m}$$

$$x^{2m} + x^{m}$$

ATM 4.5 & 4.6 Different Factoring Methods

FACTORING

- 1. Look for a common factor.
- 2. If there are 2 terms and you have done #1,is it:
 - --- A difference of squares
 - --- The sum or difference of two cubes.
- 3. If there are 3 terms and you have done #1, can it be factored as the product of 2 binomials?
- 4. If there are more than 3 terms, can it be factored by grouping?
- 5. Has the polynomial been completely factored? Can any of the factors you found be factored again? If so, you must factor these again.

Factoring Out the GCF

- 1. Find the GCF
- 2. Divide each term by the GCF
 - Result is the quotient
- 3. Put in factored form = (GCF)(Quotient)
- 4. Check your solution
 - Use the distributive property

Example 1

$$15ab^2 - 25abc$$
$$5ab(3b - 5c)$$

Factoring By Grouping

- Group polynomial into two parts
- 2. Factor out the GCF from each group

Note: You should have the same polynomial as a factor in both groups-→New GCF

- 3. Factor out the New GCF
- 4. Result: (New GCF)(Quotient)

Example 2

$$6x^{2}y - x^{2} + 6y - 1$$

$$6x^{2}y - x^{2} + 6y - 1$$

$$x^{2}(6y - 1) + 1(6y - 1)$$

$$(x^{2} + 1)(6y - 1)$$

Factoring Trinomials

$$2x^2 + 7x + 6$$

- Split the middle term/ X method (then grouping)
- Guess & Check/ Trial & Error

Ex3.
$$2x^2 + 7x + 6$$

Perfect Square Trinomials

A trinomial is a PST if meets these criteria.

- The first and last terms are perfect squares (i.e. 4, 9, 16, 25)
- The middle term is two times the square root of the first (a) and last (b) terms

$$a^2 \pm 2ab + b^2 = (a \pm b)(a \pm b) = (a \pm b)^2$$

Factor
$$9y^{2} + 12y + 4$$

$$\sqrt{9y^{2}} = 3y$$

$$\sqrt{4} = 2$$

$$2(3 \times 2) = 12$$

$$(3y+2)^{2}$$

Difference of Two Squares

A binomial is a Difference of squares if meets these criteria.

- The first and last terms are perfect squares (i.e. 4, 9, 16, 25)
- The first and last terms have opposite signs (one is positive, one is negative)

$$(a^2-b^2) = (a+b)(a-b)$$

Note: The SUM of two squares WILL NOT factor this way.

Ex.5
Factor
$$16x^{2} - 169y^{2}$$

$$\sqrt{16x^{2}} = 4x$$

$$\sqrt{169y^{2}} = 13y$$

$$(a+b)(a-b)$$

$$(4x+13y)(4x-13y)$$

Ex.6
Factor
$$5x^{3} + 15x^{2} - 5x - 15$$

$$5x^{3} + 15x^{2} - 5x - 15$$

$$5x^{2}(x+3) - 5(x+3)$$

$$(5x^{2} - 5)(x+3)$$

$$5(x^2-1)(x+3)$$
$$5(x+1)(x-1)(x+3)$$

Sums and Differences of Cubes

$$a^{3} + b^{3}$$
 or $a^{3} - b^{3}$
$$(a+b)(a^{2} - ab + b^{2}) \qquad (a-b)(a^{2} + ab + b^{2})$$

SOFA SOFA

Same Opposite of the First Always+

Ex 7
Factor
$$x^3y^3 + 8$$

Ex 9

Factor: Hint, remember you might have to pull out a GCF first to make them perfect cubes.

$$24x - 81x^4$$

Solving Equations using Factoring

• Set the equation equal to zero
$$2x^2 + 7x + 6 = 0$$

Factor

• Set each factor equal to zero

• Solve each case

Check

$$2x^2 + 7x + 6$$

$$2x^2 + 7x + 6 = 0$$

$$(2x+3)(x+2) = 0$$

$$2x + 3 = 0 \qquad x + 2 = 0$$

$$2x = -3 \qquad \qquad x = -2$$

$$x = -\frac{3}{2} \qquad x = -2$$

Worksheet: Page 173

Name:______Pd.___

Written Exercises

Simplify. Assume that variable exponents represent positive integers.

A 1. $3z^2 \cdot 2z^3$

3.
$$(-t^4)^3$$

5.
$$(3x^2y)(xy^2)$$

7.
$$(-2u^2)(uv^3)(-u^2v^2)$$

9. $(4a^3b^2)^2$

11. $(-3pq^4r^2)^3$

13.
$$(-z^3)(-z)^3$$

15.
$$(s^2t)^3(st^3)^2$$

17.
$$3y(y^3 - 2y^2 + 3)$$

19.
$$rs^2(r^2-2rs-s^2)$$

21.
$$z^{n-2} \cdot z^{n+2}$$

23.
$$x^{m-1} \cdot x \cdot x^m$$

25.
$$r^{h-2}(r^{h+1})^2$$

2. $5r^2 \cdot r^4$

4.
$$(-t^3)^4$$

6.
$$(4p^2q)(p^2q^3)$$

8.
$$(r^2s)(-3rs^3)(2rs)$$

10.
$$(2c^2d^3)^3$$

12.
$$(-x^2yz^3)^4$$

14.
$$(-c)^2(-c^4)$$

16.
$$(2x^2y^3)^3(3x^3y)^2$$

18.
$$x^2(x-2x^2+3x^3)$$

20.
$$p^2q^3(p^2-4q)$$

22.
$$t^4 \cdot t^{k-4}$$

24.
$$y^{p+2} \cdot y^p \cdot y^{p-2}$$

26.
$$s^3(s^{2k-1})^3$$

B 27. $t(t^{n-1}+t^n+t^{n+1})$

29.
$$p^n(p^{m-n+1}+p^{m-n})$$

31.
$$z^{m-n}(z^{n+m}-z^{n-m}+z^n)$$

33.
$$(t^{\prime n})^n (t^n)^{n-m}$$

28. $x^2(x^k - x^{k-1} + x^{k-2})$

30.
$$s^{2n}(s^{2m-n}-s^{m-2n})$$

32.
$$x^{h+k}(x^{2h-k}-x^{h-2k}+x^k)$$

34.
$$(y^{h-k})^h(y^{h+k})^k$$

In Exercises 35–38, solve for n.

35.
$$3^{5n} = 3^5(3^{2n})^2$$

37.
$$3 \cdot 9^{2n} = (3^{n+1})^3$$

36. $(2^{3n})^2 = (2^n)^3 \cdot 2^{n+6}$

38.
$$4^{n+3} \cdot 16^n = 8^{3n}$$

C 39. Prove the first law of exponents.

40. Prove the third law of exponents.

41. Prove that for positive integers m, n, and r, $((a^m)^n)^r = a^{mnr}$.

42. Prove that for positive integers m and n, $(a^m)^n = (a^n)^m$.

ATM

Name _____

4.5 & 4.6 Factoring & Solving by Factoring Quiz RWS Factor <u>completely</u>. If the polynomial cannot be factored, write prime.

1.
$$x^2 - 10x + 24$$

2.
$$3n^3 - 15n^2 + 2n - 10$$

3.
$$4x^2 - 64$$

4.
$$3x^2 + 3x - 6$$

5.
$$x^3 - 4x^2 - x + 4$$

6.
$$x^3 + 8$$

7.
$$9x^2 + 25$$

8.
$$8x^2 + 2x - 15$$

9.
$$7x^2 + 50x + 7$$

10.
$$5n^2 - 18n + 9$$

11.
$$25x^2 + 80x + 64$$

Answers

Period ____

- 1.
- 2. _____
- 3. _____
- 4. _____
- 5. _____
- 6.
- 7. _____
- 8. _____
- 9. _____
- 10. _____
- 11. _____

12.
$$27x^3 - 8$$

13.
$$20x^2 - x - 12$$

14.
$$70xy - 84x - 10y + 12$$

Solve by completely factoring.

15.
$$3x^2 - 5x = 0$$

16.
$$15x^2 + 17x - 6 = -10$$

17.
$$n^3 - 8n^2 + 15n = 0$$

Factor completely.

Answers

- 12. _____
- 13. _____
- 14. _____
- **15.** factors: _____

solution: _____

16. factors: _____

solution:

17. factors: _____

solution:

18.
$$x^4 - 81$$

19.
$$150m^2nz + 20mn^2c - 120m^2nc - 25mn^2z$$
 20. $2n^2 + 6n - 108$

20.
$$2n^2 + 6n - 108$$