ALGEBRA 2 PACKET – ARNETT, GARCIA, TAYLOR WEEKS 5-7 (APRIL 27 – MAY 15)

Students are encouraged to use the suggested pacing schedule as we move forward and learn NEW material. We are going to finish the chapter on Rational Expressions & Functions and then assess 5/14-5/15. For each lesson, teachers have provided a video with instruction and a completed power point with examples. The intent is for you to **FIRST**, watch the video and work through the examples. **SECOND**, do the attached assignments. **THIRD**, reach out to your teacher if you have questions. **FOURTH**, submit the assignment via Remind, Email, Teams (Taylor) or Focus. Parents and students are encouraged to connect with the teachers via Remind or email.

ADDITIONAL RESOURCES (video lessons & practice activities)

ClassLink >> Pearson Realize (Textbook)

ClassLink >> Algebra Nation

https://www.khanacademy.org/resources/teacher-essentials

	CONTACT INFO	RMATION
Mr. Jacob Arnett		
Remind:		Email:
Per 1: @arnetta2-1	Per 4: @arnetta2-4	arnettj@leonschools.net
Per 2: @arnetta2-2	Per 5: @arnettatm5	
Per 3: @arnetta2-3	Per 6: @arnettatm6	
Mrs. Kim Garcia		
Remind:		Email:
Honors: @leonalg2h	General: @leonalg219	garciak@leonschools.net
Mrs. Martina Taylor		
Remind:		Email:
Per 5: @5leonalg2	Per 6: @6leonalg2	taylorm2@leonschools.net

	DAILY PACING SCHEDULE	DUE DATE
4/27	Continue to watch video 8.1 & 2.2, complete notes on 8.1 & 2.2, Do WS 8.1 & 2.2	4/28
4/28 – 4/30	Watch video 8.4, complete notes on 8.4, Do WS 8.4	5/1
5/1 – 5/5	Watch video 8.5, complete notes on 8.5, Do WS 8.5	5/6
5/6 – 5/8	Watch video 8.6, complete notes on 8.6, Do WS 8.6	5/11
5/11 - 5/12	Test 8.1, 8.4-8.6 & 2.2 Review WS A	5/13
5/13 – 5/14	Test 8.1, 8.4-8.6 & 2.2 Review WS B	5/15
5/14-5/15	Test on 8.1, 8.4-8.6 & 2.2 (More info to follow via Remind or teacher websites)	5/15

8.1 Inverse Variation & 2.2 Direct Variation

Learning goals

- recognize and use inverse variation
- write and interpret direct variation equations
- · use joint and other variations

Inverse Variation: as the absolute value of x increases, the absolute value of y decreases $y = \frac{k}{x}$ $k \neq 0$ k = xy

'k' is the constant of variation

Direct Variation:

as the absolute value of x increases, the absolute

'k' is the constant of variation

<u>Ex 1</u>

Direct, inverse, or neither? Findk.

х	У
3	0.7
6	0.35
21	0.1

Ex 2

Direct, inverse, or neither? Findk.

x	У
- 2	6
- 1.3	5
7	-4

<u>Ex 3</u>

Direct, inverse, or neither? Findk.

	-	
X	у	
-2	5	
4	- 10	
6	- 15	

Suppose that x and y vary inversely. If x = 7 and y = 4, write a function.

<u>Ex 5</u>

$$y = kx$$

Are these direct variations?

$$3y = 7x + 7$$

$$5x = 2y$$

Ex 6

$$k = \frac{y}{x}$$

$$y = kx$$

- •A dripping faucet wastes a cup of water if it drips for three minutes.
- •The amount of water wasted varies <u>directly</u> with the amount of time the faucet drips.
- •Write an equation.

How long must it drip to waste 4.5 cups?

Combined Variations

- y varies directly with the square of x:
- y varies inversely with the cube of x:
- •z varies jointly with x and y and inversely with w:
- •z varies <u>directly</u> with x and <u>inversely</u> with the product of w and y:

Ex 7

The mass m of a moving object is related to its kinetic energy k and its velocity v by $m = \frac{2k}{m^2}$.

Describe the relationship using a combined variation.

Ex 8

Describe the relationship using a combined variation.

$$A = \frac{1}{2}h(b_1 + b_2)$$

Ex 9

- •z varies directly as x and inversely as the square of y.
- When x = 35, y = 7, and z = 50.
- Write a function & find z when x = 5 and y = 10.

* must works*

We	will	never	mention	The
#	117	ng P	roblem	
	V			

Combi	ned Variatio	ns	
y vs. = s	decity with the sq	asta of a	شما
y straig	wersely with the c	tibe of a	Į.
	- Stanooner		, F
2 V2+122	county wight a and y	and toversely w	KA M.
1 931145	directly with a and	inmercado scieta el	ne aradia e
and y		The stay in the C	in beneated a
10	Phy (

En 7

The mass m of a moving object is related to its kinetic energy k and its velocity v by
$$\frac{2k}{11} = \frac{2k}{\sqrt{2}}$$

Describe the relationship using a cumbined variation M VAILOS A 1/100

WITH K & 1/100

LUI THE SEHARE OF V

(didn't neithern the 2)

Determine whether y varies directly with x. If so, find the constant of variation.

1.
$$y = 12x$$

2.
$$y = 4x - 3$$

For problem numbers 3-4, y varies directly with x.

3. If
$$y = 4$$
 when $x = -2$, find x when $y = 6$.

4. If
$$y = 7$$
 when $x = 2$, find x when $y = 3$.

5. **Distance** For a given speed, the distance traveled varies directly with the time. Kate's school is 5 miles away from her home and it takes her 10 minutes to reach the school. If josh lives 2 miles from school and travels at the same speed as Kate, how long will it take him to reach the school?

Is the relationship between the values in each table a *direct variation*, and *inverse variation*, or *neither*? Write equations to model the direct and inverse variations.

6.

3 15 8 40 10 50 22 110		33
8 40 10 50	1	3
10 50		8
		10
		22

7.

×	У
3	14
5	8.4
7	6
105	4

Is the relationship between the values in each table a *direct variation*, and *inverse variation*, or *neither*? Write equations to model the direct and inverse variations.

8.

x	y
0.5	1
2.1	4.2
3.5	7
11	22

9.

у
3
0.1
0.05
0.0125

10. Painting The number of buckets of paint *n* needed to paint a fence varies directly with the total area *a* of the fence and inversely with the amount of paint *p* in a bucket. It takes three 1-gallon buckets of paint to paint 72 square feet of fence. How many 1-gallon buckets will be needed to paint 90 square feet of fence?

Write the function that models each variation. Find z when x = 4 and y = 9.

- **11.** Z varies directly with x and inversely with y. When x = 6 and y = 2, z = 15.
- **12.** Z varies jointly with x and y. When x = 2 and y = 3, z = 60.
- 13. Z varies inversely with the product of x and y. When x = 2 and y = 4, z = 0.5.

8.4 - Multiplying and Dividing Rational Expressions

April 28, 2020

2

Ex 1 Simplify. $\frac{x^2 - 6x - 16}{x^2 + 5x + 6}$

Ex 2
Multiply, state any restrictions on the variables. $\frac{x^2+5x-6}{x-5} \cdot \frac{x^2-25}{x^2-7x+6}$

8.4 - Multiplying and Dividing Rational Expressions

April 28, 2020

8.4 - Multiplying and Dividing Rational Expressions COMPLETE

April 28, 2020

Simplest Form

rational expression: quotient of two polynomials
- in simplest form when the numerator and denominator have NO common factors.

To reach simplest form:
 factor
 simplify
 state restrictions

Ex 1 Simplify. $x^2 - 6x - 16$ $x^2 + 5x + 6$ Factor numerator and denominator: (x - 8)(x + 2) (x + 3)(x + 2)Cancel common factors: (x - 8)(x + 2) (x + 3)(x + 2) (x

4

8.4 - Multiplying and Dividing Rational Expressions COMPLETE

April 28, 2020

Period ____

1.
$$\frac{v^2+v-56}{v^2-2v-80} \div \frac{1}{v-10}$$

2.
$$\frac{n+3}{n+2} \div \frac{n^2+2n-3}{n^2-2n+1}$$

3.
$$\frac{x+3}{4} \cdot \frac{3x-18}{3x+9}$$

4.
$$\frac{x-8}{x^2-2x-48} \bullet \frac{4x^2+40x}{x+10}$$

5.
$$\frac{2y^2-12y}{y+5} \div \frac{y-6}{y+5}$$

6.
$$\frac{1}{n+9} \div \frac{6-n}{3n-18}$$

7.
$$\frac{28-7a}{a-4} \cdot \frac{1}{a+10}$$

8.
$$\frac{2}{v^2 - 12v + 27} \bullet \frac{v^2 - 12v + 27}{3}$$

9.
$$\frac{1}{5p^2} \div \frac{9p-36}{5p^3-35p^2}$$

10.
$$\frac{x^2 + 7x - 8}{x + 8} \bullet \frac{x + 5}{9x - 9}$$

11.
$$\frac{x^2-16}{9-x} \bullet \frac{x^2+x-90}{x^2+14x+40}$$

12.
$$\frac{10x^2 - 20x}{40x^3 - 80x^2} \bullet \frac{16x^3 + 80x^2}{6x + 30}$$

8.5 - Adding and Subtracting Rational Expressions & Complex Fractions

May 1, 2020

8.5

Adding & Subtracting Rational Expressions

Learning goal

add and subtract rational expressions

1

<u>Ex 3</u>

$$\frac{3c}{2c-1} - \frac{5c+1}{2c-1}$$

3

<u>Ex 1</u>

$$\frac{2}{5} + \frac{3}{4}$$

Ex 2

$$\frac{4}{3} + \frac{2}{3}$$

2

<u>Ex 4</u>

Find the LCM of
$$2x^2 - 8x + 8$$
 and $15x^2 - 60$

- Factor each expression.
- Write each factor the greatest number of times it appears in either expression.

8.5 - Adding and Subtracting Rational Expressions & Complex Fractions

May 1, 2020

<u>Ex 5</u>

• Find the LCM of: $5x^2 + 15x + 10$ and $2x^2 - 8$

Ex 6 Simplify

$$\frac{1}{3x^2 + 21x + 30} + \frac{4x}{3x + 15}$$

5

Ex 7 Simplify

$$2x$$
 3

$$\frac{2x}{x^2 - 2x - 3} - \frac{3}{4x + 4}$$

Complex Fractions

A complex fraction has a fraction in the numerator, denominator, or both.

Ex 8 Simplify

$$\frac{2}{x+y}$$

$$\frac{1}{1+\frac{x}{v}}$$

8.5 - Adding and Subtracting Rational Expressions & Complex Fractions

May 1, 2020

<u>Ex 9</u>		
$\frac{1}{x} + \frac{1}{y}$		
$\frac{\overline{2}}{y} - \frac{1}{x}$		
,		

 $\frac{x-2}{x-1} - \frac{2}{x+1} = \frac{3}{x-1} - \frac{1}{x+1}$

8.5 - Adding and Subtracting Rational Expressions & Complex Fractions COMPLETE

May 1, 2020

8.5

Adding & Subtracting Rational Expressions

Learning goal

add and subtract rational expressions

1

3

 $\frac{3c}{2c-1} - \frac{5c+1}{2c-1} = \frac{3c - (5c+1)}{2c-1} = \frac{-2c-1}{2c-1}$ $= \frac{-(2c+1)}{2c-1}$ $= \frac{-(2c+1)}{2c-1}$ $(c \neq 1/2)$

Ex 1 Least Common Denominator (LCD): 20 $4*2 + \frac{3}{4}*5 + \frac{3}{4}*5 \text{ Multiply each fraction to get LCD}$ $\frac{8}{20} + \frac{15}{20} = \frac{23}{20}$ Ex 2 $x*4 + \frac{2}{3}*3 + \frac{2}{3}*3 = \frac{4x}{3x} + \frac{6}{3x} = \frac{4x+6}{3x} = \frac{2(2x+3)}{3x}$ $(x \neq 0)$

2

Ex 4

Find the LCM of $2x^2 - 8x + 8$ and $15x^2 - 60$

• Factor each expression.

 $2x^2 - 8x + 8 = 2(x - 2)^2$ $15x^2 - 60 = 15(x - 2)(x + 2)$

 Write each factor the greatest number of times it appears in either expression.

LCM:
$$2 * 15(x-2)^2(x+2)$$

OR
 $30(x-2)^2(x+2)$

8.5 - Adding and Subtracting Rational Expressions & Complex Fractions COMPLETE

May 1, 2020

Ex 5
• Find the LCM of:
$$5x^2 + 15x + 10$$
 and $2x^2 - 8$

$$5x^2 + 15x + 10 = 5(x+2)(x+1)$$

$$2x^2 - 8 = 2(x-2)(x+2)$$
LCM: $2*5(x+2)(x+1)(x-2)$
OR
$$10(x+2)(x+1)(x-2)$$

 $\frac{\text{Ex 6}}{3x^2 + 21x + 30} + \frac{4x}{3x + 15}$ Factor: $\frac{1}{3(x + 2)(x + 5)} + \frac{4x}{3(x + 5)}$ Multiply by missing factors: $\frac{4x^2 + 8x + 1}{3(x + 2)(x + 5)} + \frac{4x(x + 2)}{3(x + 2)(x + 5)}$ Add (just numerators): $\frac{1 + 4x(x + 2)}{3(x + 5)(x + 2)} = \frac{4x^2 + 8x + 1}{3(x + 5)(x + 2)}$

5

 $\frac{\text{Ex 7}}{2x} \qquad \text{Simplify} \qquad \text{LCD: } 4(x-3)(x+1)$ $\frac{2x}{x^2-2x-3} - \frac{3}{4x+4}$ Factor: $\frac{2x}{(x-3)(x+1)} - \frac{3}{4(x+1)}$ Multiply by missing factors: $\frac{4\cdot 2x}{4(x-3)(x+1)} - \frac{3(x-3)}{4(x+1)(x-3)}$ Subtract (just numerators): $\frac{8x-3(x-3)}{4(x-3)(x+1)} = \frac{8x-3x+9}{4(x-3)(x+1)}$

Complex Fractions

A complex fraction has a fraction in the numerator, denominator, or both.

Ex 8 Simplify Multiply the numerator and denominator by the LCD $\frac{2}{x+y} \quad (x+y) \quad 1 + \frac{x}{y}$ $\frac{2}{3} \quad (x+y) \quad y \cdot 1 + \frac{x}{y}$ $= \frac{2(x+y)}{3(x+y)} = \frac{2}{3(x+y)}$ $= \frac{2}{3(x+y)} = \frac{2}{3(x+y)}$

8.5 - Adding and Subtracting Rational Expressions & Complex Fractions COMPLETE

May 1, 2020

$$\frac{\underbrace{\operatorname{Ex} 9}{xy \cdot x} + \underbrace{\frac{1}{y} \cdot xy}_{xy \cdot y} = \underbrace{\frac{xy}{x} + \frac{xy}{y}}_{y \cdot xy} = \underbrace{\frac{y + xy}{2x - y}}_{y}$$

$$\frac{\text{Ex } 10}{(x+1)(x-1)} \cdot \underbrace{\frac{x-2}{x-1} - \frac{2}{x+1}}_{(x+1)(x-1)} \cdot \underbrace{(x+1)(x-1)}_{(x+1)(x-1)} \\
= \underbrace{\frac{(x+1)(x-2) - 2(x-1)}{3(x+1) - (x-1)}}_{3(x+1) - (x-1)} = \underbrace{\frac{x^2 - x - 2 - 2x + 2}{3x + 3 - x + 1}}_{2(x+2)}$$

$$= \frac{x^2 - 3x}{2x + 4} = \frac{x(x-3)}{2(x+2)}$$

Add or subtract each expression.

1.
$$\frac{u-v}{8v} + \frac{6u-3v}{8v}$$

3.
$$\frac{6}{x-1} - \frac{5x}{4}$$

5.
$$\frac{3}{x+7} + \frac{4}{x-8}$$

7.
$$\frac{2}{x+1} - \frac{3}{x+5}$$

9.
$$\frac{2x}{5x+4} + \frac{6x}{2x+3}$$

11.
$$\frac{7n}{n+1} + \frac{8}{n-7}$$

13.
$$\frac{\frac{a}{25} - \frac{a}{5}}{a}$$

15.
$$\frac{\frac{2}{x}-5}{\frac{6}{x}-3}$$

17.
$$\frac{\frac{5}{x+3}}{2+\frac{1}{x+3}}$$

2.
$$\frac{3}{n-5} + \frac{6}{3n-8}$$

Name_

4.
$$\frac{4}{x+1} - \frac{2}{x+2}$$

6.
$$\frac{3}{x+6} + \frac{7}{x-2}$$

8.
$$\frac{5}{n+5} + \frac{4n}{2n+6}$$

10.
$$\frac{3}{x-8} + \frac{7}{x+3}$$

12.
$$\frac{2}{n+8} + \frac{4}{n+1}$$

14.
$$\frac{\frac{5}{4}}{\frac{5}{m} - \frac{4}{m}}$$

16.
$$\frac{x+3}{x-3}$$

18.
$$\frac{\frac{3}{x+1}}{\frac{5}{x-1}}$$

8.6 - Solving Rational Equations COMPLETE

May 6, 2020

8.6 Solving Rational Equations
AN EQUATION THAT CONTAINS AT LEAST ONE
RATIONAL EXPRESSION.

CHECK FOR EXTRANEOUS SOLUTIONS

Ex 2
$$\frac{3}{5x} - \frac{4}{3x} = \frac{1}{3}$$

$$E \times 1 \qquad \frac{1}{x-3} = \frac{6x}{x^2 - 9}$$

$$E \times 3 \qquad \frac{4}{x} - \frac{3}{x+1} = 1$$

8.6 - Solving Rational Equations COMPLETE

May 6, 2020

 $E \times 4 \qquad \frac{x-1}{x^2 + 3x + 2} + \frac{2x}{x+2} = \frac{x-1}{x+1}$

 $EX \quad 1 \qquad \frac{1}{x-3} = \frac{6x}{x^2-9}$ $\frac{1 \cdot (x^2-9) = 6x \cdot (x-3)}{x^2-9 = 6x^2-18x}$ $0 = 5x^2-18x+9$ 0 = (5x-3)(x-3) $x = 3 \text{ or } \frac{3}{5}$ $x = 3 \text{ or } \frac{3}{5}$

1

$$Ex \ 2 \qquad \frac{3}{5x} - \frac{4}{3x} = \frac{1}{3}$$

$$LCD: 15x$$

$$\frac{3 \cdot 15x}{5x} - \frac{4 \cdot 15x}{3x} = \frac{1 \cdot 15x}{3}$$

$$\frac{45x}{5x} - \frac{60x}{3x} = \frac{15x}{3}$$

$$9 - 20 = 5x$$

$$x = -\frac{11}{5}$$
Final Answer

Ex 3 $\frac{4}{x} - \frac{3}{x+1} = 1$ Check x = 2 $\frac{4}{2} - \frac{3}{2+1} = 1$ x = 2 works!

LCD: x(x+1) $\frac{4 \cdot x(x+1)}{x} - \frac{3 \cdot x(x+1)}{x+1} = 1 \cdot x(x+1)$ $\frac{4(x+1) - 3x = x^2 + x}{x+4 = x^2 + x}$ Check x = -2 $\frac{4}{-2} - \frac{3}{-2+1} = 1$ x = -2 works, too!

Final Answer

3

Date ______ Period _____

1.
$$\frac{1}{9} + \frac{1}{x} = \frac{4}{9}$$

2.
$$\frac{2}{5} + \frac{1}{x} = \frac{1}{2}$$

3.
$$\frac{5}{4x} + \frac{1}{x} = 3$$

4.
$$\frac{7}{x-3} = \frac{4}{x}$$

5.
$$\frac{8}{5x} - \frac{2}{3x} = \frac{4}{15}$$

6.
$$\frac{x+5}{4x} + \frac{11}{12} = \frac{2}{3x}$$

7.
$$\frac{x}{2x+6} - \frac{1}{x+3} = 1$$

8.
$$\frac{1}{x+5} = \frac{2}{x^2-25}$$

9.
$$\frac{1}{x+3} = \frac{7}{x-3} - \frac{2}{x^2-9}$$

10.
$$\frac{x-3}{2x-4} = \frac{x}{x-2} + 2$$

11.
$$\frac{x+5}{x^2-x} - \frac{3}{x} = \frac{1}{x-1}$$

12.
$$\frac{x+3}{x} - \frac{x+2}{x+5} = \frac{1}{x}$$

State whether the relationship represents a direct variation, inverse variation, or neither. Write the equation to model direct or inverse variations.

1.

\boldsymbol{x}	y
3	15
4	20
6	32
7	38

2

x	у
12	8
9	6
6	4
3	2

Write the function that models each variation; then evaluate the variation.

3. z varies jointly with x and the square of y. Find k if z=36, x=3, and y=2. Now find z if x=8 and y=6.

Multiply or divide and state any restrictions.

4.
$$\frac{3x+18}{x^2+4x-12} \bullet \frac{x-3}{x^2-9}$$

5.
$$\frac{2x^2 + 10x - 12}{3x + 15} \cdot \frac{4x + 20}{\left(x - 1\right)^2}$$

Simplify each complex fraction.

6.
$$\frac{\frac{2x}{x+3}}{\frac{6x^2}{x^2+6x+9}}$$

$$7. \quad \frac{2 - \frac{y}{x}}{-1 + \frac{2x}{y}}$$

Solve each rational equation. Be sure to state any extraneous solutions, if necessary.

8.
$$\frac{x+5}{x^2-2x}-1=\frac{1}{x^2-2x}$$

Date _____Period ___

State whether the relationship represents a direct variation, inverse variation, or neither. Write the equation to model direct or inverse variations.

1.

\boldsymbol{x}	y
8	14
5	22.4
2	56
0.8	140

2

	x	у
	2	10.4
	3.5	18.2
	5	26
1	6.5	33.8

Write the function that models each variation; then evaluate the variation.

3.
$$y$$
 varies directly with x and inversely with z . Find k if $y=14, x=7$, and $z=9$. Now find y if $x=3$ and $z=12$.

4. A varies jointly with
$$l$$
 and w . Find k if $l=5, w=6$, and $A=15$. Now find A if $l=10$ and $w=7$.

Multiply or divide and state any restrictions.

5.
$$\frac{2-x}{3x-6} \div \frac{x^2+x}{15x+15}$$

6.
$$\frac{4x}{9x^3} \div \frac{16x+4}{x^2+x}$$

Simplify each complex fraction.

7.
$$\frac{\frac{4}{x+2}-1}{\frac{1}{y}}$$

Solve each rational equation. Be sure to state any extraneous solutions, if necessary.

8.
$$1 = \frac{1}{x^2 + 2x} + \frac{x - 1}{x}$$

9.
$$\frac{1}{y-2} + \frac{1}{y^2 - 7y + 10} = \frac{6}{y-2}$$

Period ____

State whether the relationship represents a direct variation, inverse variation, or neither. If the table represents a variation, write the equation to model the variation. If it doesn't, write "NA".

1.

х	y
5	30
7	42
9	54
11	66

х	у
3	24
4	18
8	9
9	8

Answer each question regarding the following variation.

3.

- **A.** z varies jointly with x and y and inversely with the cube of r. Write the function to model this variation.
- **B.** Find constant of variance when if z = 56 when r = 2, x = 7, and y = 2.
- **C.** Find z when r = 3, x = 6, and y = 12.

Choose the best answer.

4. Which expression is equivalent to $\frac{\frac{2}{x}+5}{\frac{1}{y}}$? Use a capital letter.

A.
$$\frac{10y}{x}$$

B.
$$\frac{5x+2}{x}$$

A.
$$\frac{10y}{x}$$
 B. $\frac{5x+2}{xy}$ C. $\frac{2y+5xy}{x}$ D. $\frac{x}{2x+5xy}$

$$\mathbf{D.} \ \frac{x}{2x+5xy}$$

Answers
111241612

1. variation type _____

equation:

2. variation type _____

equation____

3. A. function _____

B. k =_____

c. z =______

Simplify into a single rational expression in factored form; state any restrictions. If there are no restrictions, write "none".

5.
$$\frac{x^2-1}{x^2+2x-3} - \frac{x+1}{x+3}$$

6.
$$\frac{-16}{x^2-4} + \frac{x-6}{2x+4}$$

7.
$$\frac{x^2 - 2x - 24}{x^2 + 7x + 12} \cdot \frac{1 - x^2}{x - 6}$$

8.
$$\frac{4x^2-2x}{x^2+5x+4} \div \frac{2x}{x^2+2x+1}$$

Solve each rational equation. Be sure to state any extraneous solutions, if necessary. If there are no extraneous solutions, write "none".

9.
$$\frac{2}{x+3} + \frac{3}{x-4} = \frac{2x-2}{x^2-x-12}$$

$$10. \frac{1}{x-4} = \frac{x}{x^2-16}$$

	Answers	
5.		
	restrictions	
6.		
	restrictions	
7.	restrictions	
8.		
	restrictions	
9.	extraneous	
LO.		
	extraneous	